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Abstract

Three analytical double-parameter criteria based on a bending model and a two-dimensional finite element analysis

model are presented for the modeling of ductile thin film undergoing a nonlinear peeling process. The bending model is

based on different governing parameters: (1) the interfacial fracture toughness and the separation strength, (2) the

interfacial fracture toughness and the crack tip slope angle, and (3) the interfacial fracture toughness and the critical

Mises effective strain of the delaminated thin film at the crack tip. Thin film nonlinear peeling under steady-state

condition is solved with the different governing parameters. In addition, the peeling test problem is simulated by using

the elastic–plastic finite element analysis model. A critical assessment of the three analytical bending models is made by

comparison of the bending model solutions with the finite element analysis model solutions. Furthermore, through

analyses and comparisons for solutions based on both the bending model and the finite element analysis model, some

connections between the bending model and the finite element analysis model are developed. Moreover, in the present

research, the effect of different selections for cohesive zone shape on the ductile film peeling solutions is discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The fundamental roles of thin films in modern materials are not only in protection and connection, but

also in strengthening or toughening. In addition, thin films also play an important role in extending the

multi-functions of modern materials. In order to check the adhesion property and separation strength

between a thin film and a substrate, a simple test method, called peel test, was designed 50 years ago by

Spies (1953). Due to simplicity of the test method to be operated, the peel test has been widely applied in

many research areas (Feliu-Baez et al., 2001; Choi and Oh, 2001; Asai et al., 2001; Bundy et al., 2000;
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Kawabe et al., 2000). Specifically, when both the thin film and the substrate can be considered as elastic

materials, the interfacial adhesion properties (adhesion toughness) can be obtained directly by measuring

the peel force. Actually, the peel force per unit length (i.e., energy release rate of system) is equal to the

interfacial adhesion energy per unit area (toughness) from considering energy balance of total system.
However, when the thin film is a ductile material, the measured peel force is often much larger than the

interfacial toughness. Plastic dissipation due to plastic loading and unloading occurs during the peeling

process. The plastic dissipation increases the exerted peel force in order to allow the thin film delamination.

In order to model the increase of the energy release rate (or peeling force) due to plastic dissipation, Kim

and his coworkers (Kim and Aravas, 1988; Kim and Kim, 1988; Kim et al., 1989) presented a plastic

bending model to predict the plastic dissipation of ductile thin films. In the decade following that with most

analyses on ductile thin film peeling adopted or referred to this bending model (Kinloch et al., 1994; Moidu

et al., 1998; Park and Yu, 1998; Yang et al., 1999). Wei and Hutchinson (1998) adopted a different method
to analyze elastic–plastic film peeling process. In their analysis, the thin film steady-state delaminating

process was simulated by using the elastic–plastic finite element method under 2D plane strain conditions,

except for the detached part of thin film which was still described by the bending model. They obtained

qualitatively and quantitatively different result from that based on the bending model. An important

question is thus: what model is the most reliable? Considering that the bending model is simple and easily

can be used to interpret applications, one wants to know the condition under which the bending model

result is reliable.

Considering that the peel test is widely applied and plays an important role in thin film engineering, it is
very important and necessary to clear up that point. For this purpose, several experts (Cotterell et al., 2002)

recently proposed a round robin on the analysis of the peel test involving a comparison research on Kim

model and Wei–Hutchinson model.

Usually, a complete characterization on an elastic–plastic crack growth process requires a double-

parameter criterion (Rice, 1974; Betegon and Hancock, 1991; O’Dowd and Shih, 1991; Wei and Wang,

1995). Since the peeling process of the ductile thin film is an elastic–plastic interfacial separation (fracture)

process, double-parameter criterion is thus needed to characterize the process. In the present research, three

double-parameter criteria will be adopted in order to describe the peeling process for the ductile thin film,
based on both the bending model and the two-dimensional elastic–plastic finite element analysis model. The

detailed solutions are solved for each double-parameter criterion. The characterization of both the inter-

facial adhesion toughness and the crack tip slope angle adopted by Kim and his collaborators (see Kim and

Aravas, 1988; Kim and Kim, 1988; Kim et al., 1989) is only one of the three criteria in the present research.

By analysis and comparing the bending model results with those based on the finite element analysis model

from Wei and Hutchinson (1998), the connection between two model solutions is presented. Furthermore,

the reliabilities of the bending models will be discussed.
2. Bending model and delaminating criteria in peel test

The deformation process of elastic–plastic thin film in a peeling test is described in Fig. 1. Thin film is

subjected to an external force P and undergoes delamination, plastic loading and unloading segments OA,

AB and BD in the graph of Fig. 1 are referred to the elastic bending, elastic–plastic bending as well as the

unloading bending, respectively. DE is referred to the reverse plastic bending. State E shows that the

portion of thin film is pulled into straight line and the corresponding film curvature within the portion is

zero. The section EF is the second unloading state. The detailed relation between moment and curvature

will be derived in the following section.

The ductile thin film peeling process and delamination along the substrate can be characterized by the
double-parameter criterion (an elastic delamination is usually characterized by a single-parameter crite-



Fig. 1. Bend deformation and simplified model for thin film nonlinear peeling process.
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rion). Two independent parameters are needed to characterize two main factors, interfacial adhesion
property and the plastic dissipation. In the present research, three double-parameter criteria will be used to

describe the elastic–plastic peeling process for thin film, which are described in Fig. 2(b)–(d), respectively.

Fig. 2(b) corresponds to the conventional cohesive model, the independent parameters of this model are

ðC0; r̂Þ, where C0 is interfacial fracture toughness, or adhesion energy per unit area, r̂ is the interfacial

separation strength. Fig. 2(c) corresponds to a model based on taking the interfacial adhesion toughness C0

and the crack tip critical slope angle hctip as the governing parameters for describing the peeling process. This

characterization was first adopted by Kim and his coworkers (see Kim and Aravas, 1988; Kim and Kim,

1988; Kim et al., 1989). Fig. 2(d) corresponds to a model based on two parameters ðC0;�ecÞ, where �ec is the
critical value of Mises effective strain at the crack tip for thin film. This model is a new model described in
Fig. 2. Bending model and three double-parameter criteria for peeling test. (a) Peel test, (b) ðC0; r̂Þ criterion, (c) ðC0; h
c
tipÞ criterion,

(d) ðC0;�ecÞ criterion, �ec is Mises effective strain.
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the present paper. Combining these two independent parameters and the relationship of the elastic–plastic

bending, one can derive the solutions for the elastic–plastic peeling process.

It is very important to set up a relationship between the peeling force P (total energy release rate of the

system), and the interfacial adhesion toughness C0, as well as the geometrical and physical parameters of
the thin film and substrate in the peel test research. Under steady-state condition, the energy balance re-

quires:
P ð1� cosUÞ ¼ C0 ð1Þ
for elastic peeling process, and
P ð1� cosUÞ ¼ C0 þ Cp ð2Þ
for elastic–plastic peeling process. Where Cp is the plastic dissipation or the increase of energy release rate

caused by the plastic dissipation. In the following sections, based on the stress–strain analysis for thin film,
the fundamental relations for thin film nonlinear peeling process and a relationship for Cp will be derived.
3. Fundamental relations for bending model

Kim and Aravas (1988) derived the fundamental relations for thin film elastic–plastic peeling process

based on a beam bending model in the case of incompressible material conditions (m ¼ 1=2). In the present
section, the fundamental bending relations will be derived for the general case of the compressible mate-

rials.

Suppose that the uni-directional stress–strain relation for thin film material can be characterized using a

power-law hardening relation:
r ¼ Ee; if r6 rY;
rYðe=eYÞN ; if rP rY;

�
ð3Þ
where ðE; rY;NÞ are the Young’s modulus, yield strength and strain hardening exponent, respectively, and
eY ¼ rY=E is the yield strain. Eq. (3) can be generalized to a multi-axis stress case as
�r ¼
3
2
E=ð1þ mÞ

� �
�e; if �r6 rY;

rYð�e=�eYÞN ; if �rP rY;

(
ð4Þ
where m is Poisson’s ratio, while �r and �e are the effective stress and effective strain defined by
�r ¼ 3

2
r0
ijr

0
ij

� �1=2

; �e ¼ 2

3
e0ije

0
ij

� �1=2

ð5Þ
in which r0
ij ¼ rij � 1

3
rkkdij and e0ij ¼ eij � 1

3
ekkdij are the deviatoric stress and deviatoric strain, and
�eY ¼ rY

3

2
E=ð1

��
þ mÞ

�
¼ eY

3

2
=ð1

��
þ mÞ

�
: ð6Þ
As usual, let us suppose that the thin film can undertake normal stress only, and that shear stress can be
neglected. According to this assumption, besides rij ¼ 0, eij ¼ 0 (i 6¼ j), the stress and strain states within

the thin film under plane strain condition are given by (see Fig. 3 for coordinate system):
r11 ¼ r; r22 6¼ 0; r33 ¼ 0; e11 ¼ e; e22 ¼ 0; e33 6¼ 0; ð7Þ
where r and e are the stress and strain components along the x-direction on the x-coordinate plane. Stress
and strain components satisfy the following constitutive relations:



Fig. 3. Bend model description.
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eij ¼
1

E
½ð1þ mÞrij � mrkkdij� ð8Þ
for elastic loading, and
eeij ¼
1

E
½ð1þ mÞrij � mrkkdij�; epij ¼ kr0

ij ¼
3ep

2�r
r0
ij;

eij ¼ eeij þ epij ¼
1þ m
E

�
þ k

�
rij �

m
E

�
þ k
3

�
rkkdij

ð9Þ
for elastic–plastic loading. For power-law hardening materials (see Eq. (4)), k in Eq. (9) is obtained as
k ¼ 3ep

2�r
¼ ð1þ mÞ

E
�r
rY

 !1=N�1
2
4 � 1

3
5: ð10Þ
Using the plane strain condition e22 ¼ 0, one derives out
r11 ¼ r; r22 ¼ mr; r33 ¼ 0;

e11 ¼ ð1� m2Þr=E ¼ e; e22 ¼ 0; e33 ¼ �mð1þ mÞr=E ¼ �½m=ð1� mÞ�e
ð11Þ
for elastic loading, and
r11 ¼ r; r22 ¼ ar; r33 ¼ 0;

e11 ¼ e; e22 ¼ 0; e33 ¼ �½a=ð1� aÞ�e
ð12Þ
for elastic–plastic loading, where
a ¼ 1

2
½1� U0ð�r=rYÞ�; U0ð�r=rYÞ ¼

ð1� 2mÞ
1þ 2

3
ð1þ mÞ½ð�r=rYÞ1=N�1 � 1�

: ð13Þ
Thus, effective stress and effective strain expressed by stress and strain components in x-coordinate for

elastic case and elastic–plastic case can be found:
�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p
jrj; �e ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p

3ð1� mÞ jej ð14Þ
for elastic loading, and
�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p
jrj; �e ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p

3ð1� aÞ jej ð15Þ
for elastic–plastic loading.
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Strain component in x-direction for thin film bending can be expressed as
e ¼ �jz; ð16Þ
where j ¼ dh=ds is the curvature of the medium plane (z ¼ 0), h is the slope angle of the medium plane with

respect to the x-coordinate. The bending moment can be calculated from integral formula
M ¼ 2

Z t=2

0

jrjzdz: ð17Þ
3.1. Elastic bending

During elastic bending, from Eqs. (11), (16) and (17) one can derive the relationship between the bending

moment and the curvature as
M
M0

¼ 2j
3je

; ð18Þ
where M0 ¼ 3
2
Me is the limit bending moment for perfectly plastic material, where Me and je are the elastic

limit moment and elastic limit curvature, respectively. The expressions for Me and je are
Me ¼
2

3
M0 ¼

rYt2

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p ; je ¼
2ð1� m2ÞrY

Et
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p : ð19Þ
3.2. Elastic–plastic bending

From the power-law hardening relationship �r ¼ rYð�e=�eYÞN (see (4)) and the expressions for the effective

stress and effective strain (see Eq. (15)), one obtains
jrj ¼ re
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p ð1� mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p

ð1� aÞ
jej
eeY

� �N
; ð20Þ
where
re
Y ¼ rYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� mþ m2
p ; eeY ¼ ð1� m2ÞrY

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p ð21Þ
are the maximum stress and strain in the x-direction in the case of elastic limit bending. From Eqs. (11),

(16), (17) and (20), the bending moment can be written as
M ¼ 2

Z t=2

0

jrjzdz ¼ 2

Z n

0

jrjzdzþ 2

Z t=2

n
jrjzdz

¼ 2Ejn3

3ð1� m2Þ þ 2re
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p ð1� mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p j
jet=2

� �N Z t=2

n

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p

ð1� aÞ

� �N
zNþ1 dz;

ð22aÞ
where z ¼ n is the distance between the intersection of the elastic zone and the plastic zone with the medium

layer for a rectangle section. The moment–curvature relationship can be evaluated numerically by using
Eqs. (4), (13), (15) and (16). An approximately analytical solution can be derived. Firstly, it is interesting to

analyze the values of the function U0ð�r=rYÞ from Eq. (13), as shown in Table 1. Obviously, the value of



Table 1

The variation of function U0ð�r=rYÞ with material parameters m and N

�r=rY

1.2 1.5 2.0 2.5

N ¼ 0:1 m ¼ 0:5 0.000 0.0000 0.0000 0.0000

m ¼ 0:4 0.041 0.0056 0.0004 0.0001

m ¼ 0:3 0.087 0.0120 0.0009 0.0001

m ¼ 0:2 0.138 0.0190 0.0015 0.0002

N ¼ 0:2 m ¼ 0:5 0.000 0.0000 0.0000 0.0000

m ¼ 0:4 0.099 0.0420 0.0133 0.0055

m ¼ 0:3 0.207 0.0880 0.0280 0.0120

m ¼ 0:2 0.322 0.1411 0.0461 0.0191
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function U0 is much smaller than 1 within the effective region of the normalized effective stress �r=rY. Thus,

a in the integral of Eq. (22a) can be expanded in terms of U0,
M ¼ 2Ejn3

3ð1� m2Þ þ 2re
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p ð1� mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p j
jet=2

� �N
2ffiffiffi
3

p 1�N

�
Z t=2

n
1

�
� NU0 þ

1

2
N 2

�
þ 2

3
N � 1

6

�
U 2

0 þ � � �


zNþ1 dz: ð22Þ
The coefficients in the series expansion of the last formula are small quantities, and the influence from

each terms can be neglected, leading to
M ¼ 2Ejn3

3ð1� m2Þ þ 2re
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p ð1� mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mþ m2

p j
jet=2

� �N
2ffiffiffi

3
p 1�N ðN þ 2Þ

t
2

� �Nþ2
�

� nNþ2



: ð23Þ
On the other hand, from Eq. (13) U0 decreases monotonically with increasing �r=rY, and its maximum

and minimum are equal to 1–2m and 0, respectively. Eq. (23) corresponds to U0 ¼ 0. Let U0 be equal to
its maximum value 1–2m during the integration (see the second term of right hand side in Eq. (22a)), the

upper bound of the relative error of the integration term on the right hand side in Eq. (22a) can be obtained

as
jdU j ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3
ð1� 2mÞ2

q ð1�NÞ
½1þ ð1� 2mÞ�N

: ð23aÞ
For N ¼ 0:2 and letting m be equal to 0.5, 0.4, 0.3, 0.2, 0.1, respectively, one can obtain the values of jdU j to
be equal to 0.000, 0.041, 0.084, 0.130, 0.177, respectively.

Using M0 and je (see Eq. (19)) to normalize the moment and curvature, respectively, and considering the

relationship
jn ¼ jet=2 ¼ eeY ð24Þ
from Eq. (23) we obtain
M
M0

¼ 2

3

�
� 2

N þ 2
c



1

ðj=jeÞ2
þ 2

N þ 2
c

j
je

� �N

; ð25Þ
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where
c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ð1� mþ m2Þ

r 1�N

ð1� mÞN : ð26Þ
For incompressible materials, m ¼ 0:5 and thus c ¼ 1. The expression Eq. (25) is then expected to the one
proposed by Kim and Aravas (1988).

3.3. Unloading bending

Similarly, one can derive the moment–curvature relationship for unloading as
M
M0

¼ 2

3

j� j0

je

; ð27Þ
where j0 is the residual curvature after the first unloading, see Fig. 1.

It is worth pointing out that generally speaking, the turning point between loading and unloading (Point

B in Fig. 1) is not located at the crack tip, it locates somewhere behind the crack tip (point B for bending
model). Since this point is near the crack tip of the order O(dc), one can consider the point B on the crack

tip point in order to simplify the analysis.

Kim and Aravas (1988) discussed the moment–curvature relations for reverse bending and the second

unloading step. Since the equations were too complicated, they only studied the elastic–perfectly plastic

case. Here the approach proposed by Wei and Hutchinson (1998) is used. A parameter w0 is introduced in

order to characterize the effect from reverse bending. The definition of w0 is given in the graph accom-

panying Fig. 1.

3.4. The curvature of detached thin film portion

From the equilibrium equation ðjdM ¼ �P sinðU� hÞdhÞ and the moment–curvature relationship, one

can derive the curvature-slope angle relationship and the thin film deformation by integration. Here the

curvature-slope angle relationship of the detached film unloading only needs to be derived, which will be

used later for calculating the energy dissipation. Substituting Eq. (27) into the equilibrium equation and

considering the definition of w0, one can derive a relationship for the curvature-slope angle by a lengthy

derivation
j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� cosðU� hÞ� 2P

B
þ ð1� w0Þj2

0

r
; hB � htip 6 h6 hc; ð28Þ
where B is the bending modulus.

3.5. Summarizing the fundamental relations

At the unloading point (point B): M ¼ MB; j ¼ jB, using Eqs. (25) and (27), one have
MB=M0 ¼ 2
3
ðjB � j0Þ=je;

j0 ¼ jB þ 3
Nþ2

c� 1
� �

j3e
j2
B

� 3
Nþ2

c
jN
B

jN�1
e

:

(
ð29Þ
From Eq. (28), the curvature at the unloading point (point B) is given by
jB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� cosðU� htipÞ�

2P
B

þ ð1� w0Þj2
0

r
; ð30Þ
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where the bending stiffness B is equal to
B ¼ Et3

12ð1� m2Þ : ð31Þ
The parameter w0(06w0 6 1) in Eq. (30) defined in Fig. 1 characterizes the reverse plastic behavior (or

Bauschinger effect); htip is the crack tip slope angle of the thin film.
Fundamental bending equations:
Elastic case :
M
M0

¼ 2j
3je

; ð32Þ

Elastic–plastic case :
M
M0

¼ 2

3

�
� 2

N þ 2
c



1

ðj=jeÞ2
þ 2

N þ 2
c

j
je

� �N

; ð33Þ

Unloading case :
M
M0

¼ 2

3

j� j0

je

: ð34Þ
Suppose that the substrate is rigid or that the Young’s modulus of the substrate is much larger than that

of thin film, using formulas from Eq. (32)–(34) and the ðM–jÞ relationship of Fig. 1, one can obtain the

plastic dissipation through calculating the area within the circuit OABCDEO in M–j curves:
Cp ¼ 1

2
Meje �

1

2
MBðjB � j0Þ þ

2

3

�
� 2

N þ 2
c

�
M0 je

�
� j2

e

jB

�

þ 2c
ðN þ 1ÞðN þ 2ÞM0

jNþ1
B

jN
e

�
� je

�
þ 1

2
Bj2

0w0: ð35Þ
4. Bending model solutions for thin film nonlinear peeling

4.1. The double-parameter criterion (C0; r̂)

Considering that the interfacial fracture process is characterized by the cohesive zone model during the

thin film peeling, as usual for elastic–plastic fracture analysis, the governing parameters of the model are

often selected as ðC0; r̂Þ (Tvergaard and Hutchinson, 1993; Wei and Hutchinson, 1997; Wei, 2002; Wei
et al., 2002). Previous researches for the elastic–plastic fracture problems have shown that the predicted

results are insensitive to the selection of the cohesive zone shape parameters k1 and k2 (defined in Fig. 2(b)),

therefore, in the present research we simply take them to be ðk1; k2Þ ¼ ð0; 1Þ. One example taking different

values of ðk1; k2Þ for checking the insensitivity of the cohesive zone shape parameters will be presented later.

The critical crack tip opening displacement dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2n þ d2t

q
is related to two governing parameters by the

relation
C0 ¼ r̂dc: ð36Þ

Thus, the moment in the thin film along the cohesive zone can be expressed as
M ¼ MB þ P sinUðL� sÞ � 1

2
r̂ðL� sÞ2; ð37Þ
where L is the cohesive zone size, s is the coordinate along the zone from left to right. At crack tip s ¼ L. L
can be calculated during the integration procedure. Within the cohesive zone, based on the bending model
the curvature can be expressed to be
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j ¼ dh
ds

� d2wz

ds2
; ð38Þ
where wz is the vertical displacement. Deformation conditions within the cohesive zone can be presented as
wz ¼ 0; h ¼ 0; j ¼ 0; for s ¼ 0;

wz ¼ dc; h ¼ htip; for s ¼ L:
ð39Þ
The solution form can be written as a function of the independent parameters through dimensional analysis
as
Pð1�cosUÞ
C0

¼ f1ðE=rY; r̂=rY;N ; m; t=R0;w0;UÞ;
Etj0

rYð1�m2Þ ¼ g1ðE=rY; r̂=rY;N ; m; t=R0;w0;UÞ;
htip ¼ r1ðE=rY; r̂=rY;N ; m; t=R0;w0;UÞ;

8><
>: ð40Þ
where a length parameter R0 is introduced and defined as
R0 ¼
1

3pð1� m2Þ
EC0

r2
Y

; ð41Þ
which characterizes the plastic zone size at crack tip in the small scale yielding regime (Tvergaard and

Hutchinson, 1993; Wei and Hutchinson, 1997). htip is crack tip slope angle. If dc is adopted as a normalizing

quantity for length in Eq. (40), from Eqs. (36) and (41) there exists a relationship between dc and R0,
R0 ¼
ðr̂=rYÞðE=rYÞ
3pð1� m2Þ dc: ð42Þ
Using the relations from Eqs. (29)–(39), one can generate the detailed expressions of the solution Eq. (40)
through solving the equations using an iterating process.

4.2. The double-parameter criterion (C0; h
c
tip)

In this case, the solution can be directly obtained from Eqs. (2), (29), (30) and (35), and by dimensional
analysis. The solution form can be expressed as
Pð1�cosUÞ
C0

¼ f2ðN ; m; t=R0;w0;U; h
c
tipÞ;

Etj0
rYð1�m2Þ ¼ g2ðN ; m; t=R0;w0;U; h

c
tipÞ;

(
ð43Þ
which is independent of the material yield strength and Young’s modulus, although the effects of them are

reflected in the expression of R0.

4.3. The double-parameter criterion (C0;�ec)

For this case, the solution can be directly obtained from Eqs. (2), (4), (13), (15), (16), (29), (30) and (35),

and by dimensional analysis, the solution form can be expressed as follows
Pð1�cosUÞ
C0

¼ f3ðN ; m; t=R0;w0;U;�ec=eYÞ;
Etj0

rYð1�m2Þ ¼ g3ðN ; m; t=R0;w0;U;�ec=eYÞ;
htip ¼ r3ðN ; m; t=R0;w0;U;�ec=eYÞ;

8><
>: ð44Þ
where eY ¼ rY=E is the yield strain.
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4.4. Solutions and discussions

The solutions based on the double-parameter criterion ðC0; r̂Þ (cohesive zone characterization) are

plotted in Fig. 4(a)–(e). Fig. 4(a)–(c) show the curves of the normalized energy release rate (or normalized
Fig. 4. Solutions of thin film peeling process based on the bending model and the criterion ðC0; r̂Þ. (a) Variations of the normalized peel

force vs. thin film thickness for several separation strengths. (b) Normalized peel force vs. thin film thickness for several yield strains.

(c) Normalized peel force vs. thin film thickness for several w0 values. (d) Curves of the normalized residual curvature vs. thin film

thickness for several separation strengths. (e) Relations of thin film crack tip slope angle vs. thin film thickness for several separation

strengths.
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peel force) vs. the normalized thin film thickness under elastic–plastic and steady-state delamination. When

thin film deforms elastically, one has P ð1� cosUÞ=C0 ¼ 1, see Eq. (1). When thin film deforms plastically,

evidently, the energy release rate (peel force) is remarkably enlarged by the plastic dissipation, and it,

P ð1� cosUÞ=C0, is always larger than unity. It tends to unity when the film is either very thin or very thick.
This implies that the effect of plastic dissipation can be neglected when the ratio t=R0 is very small or very

large. Starting at t=R0 � 0, as film thickness increases, the energy release rate increases sharply and reaches

a maximum value around t=R0 ¼ 2. The plastic dissipation decreases then gradually as thin film thickness

increases further after t=R0 ¼ 2, and the energy release rate (or peeling force) gradually tends to unity. From

Fig. 4(a), the variation of the energy release rate is sensitive to the material strain hardening index N , and

surprisingly it is relatively insensitive to the interfacial separation strength, r̂=rY, unlike conventional

fracture analyses (Tvergaard and Hutchinson, 1993; Wei and Hutchinson, 1997). Fig. 4(b) shows the

variation of the normalized peel force (normalized energy release rate) as a function of t=R0 for several
values of E=rY. The effect of E=rY on the relationship between P ð1� cosUÞ=C0 and t=R0 is important.

From Fig. 4(c), the effect of w0 (inversely plastic bending) on the peel force is remarkable using the bending

model, especially around t=R0 ¼ 2. This conclusion differs from that based on the finite element simulation

model which will be shown in next section. Fig. 4(d) shows the variation of the normalized residual cur-

vature Etj0=rYð1� m2Þ as a function of t=R0 for several separation strengths. As the film thickness de-

creases, the residual curvature increases rapidly. This implies that within this parameter range thin film

undergoes considerable dissipation due to plastic bending, as discussed by Wei and Hutchinson (2003). The

variation of the crack tip slope angle with normalized thin film thickness is plotted in Fig. 4(e). From Fig.
4(e), for t=R0 < 3, decrease of the film thickness is accompanied by a significant increase of the slope angle

at the crack tip. The slope angle decreases with increasing film thickness.

In using the bending model, the effect of cohesive zone shape parameters ðk1; k2Þ on the relationship

between P ð1� cosUÞ=C0 and t=R0 is discussed here. The results for three different selections of ðk1; k2Þ are
plotted in Fig. 5. From Fig. 5, the normalized peel force (normalized energy release rate) relationship with

t=R0 is insensitive to the values of ðk1; k2Þ. This conclusion is consistent with that based on the researches for

conventional elastic–plastic fracture problems (Tvergaard and Hutchinson, 1993; Wei and Hutchinson,

1997).
The solutions based on the double-parameter criterion ðC0; h

c
tipÞ are shown in Fig. 6(a) and (b). From

Fig. 6(a), the variation of Pð1� cosUÞ=C0 as a function of t=R0 is different from that shown in Fig. 4(a)

based on the double-parameter criterion ðC0; r̂Þ. The value of P ð1� cosUÞ=C0 increases monotonically as

film thickness decreases. This result is consistent with that given by Kim and his collaborators for
Fig. 5. Normalized peel force vs. thin film thickness for several selections of cohesive zone shape parameters.



Fig. 6. The solutions of thin film peeling process based on the bending model and the criterion ðC0; h
c
tipÞ. (a) Variation of normalized

energy release rate vs. thin film thickness for several crack tip slope angles. (b) Relations of the normalized residual curvature vs. thin

film thickness for several crack tip slope angles.
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incompressible material (Kim and Aravas, 1988; Kim and Kim, 1988; Kim et al., 1989). From Fig. 6(a), the

normalized energy release rate decreases as the critical slope angle increases, implying that the plastic

dissipation decreases. Fig. 6(b) shows the relationship between Etj0=rYð1� m2Þ and t=R0. The residual

curvature increases as film thickness decreases, especially for t=R0 < 3, the residual curvature increases
Fig. 7. The solutions of thin film peeling process based on the bending model and the criterion ðC0;�ecÞ. (a) Variation of the normalized

energy release rate vs. thin film thickness for several critical effective strains. (b) Relations of the normalized residual curvature vs. thin

film thickness for several critical effective strains. (c) Variation of the thin film slope angle at tip vs. thin film thickness for several

critical effective strains.



5100 Y. Wei / International Journal of Solids and Structures 41 (2004) 5087–5104
sharply when the film thickness decreases. Obviously, there is a large plastic bending dissipation when the

film thickness is small.

The results based on the double-parametric criterion ðC0;�ecÞ are given in Fig. 7(a)–(c). The variation of

P ð1� cosUÞ=C0 as a function of t=R0 is much different from those shown above based on the other double-
parameter criteria. In Fig. 7(a), P ð1� cosUÞ=C0 increases linearly with increasing t=R0. The slopes of the

straight lines increase with increasing �ec. Fig. 7(b) shows the variation of the normalized residual curvature

with t=R0 for several critical effective strain values. From Fig. 7(b), the normalized residual curvature is

independent of the film thickness, and increases with increasing the critical effective strain. Fig. 7(c) shows

the variation of the crack tip slope angle as a function of t=R0. When the film thickness is small, the slope

angle is large. With increasing film thickness, the slope angle decreases sharply and over transits to negative

value. The transition points (slope angle is equal to zero) depend on the critical effective strain. Obviously,

the negative slope angle of detached thin film at the crack tip is physically unaccepted. It implies that the
adopted criterion is wrong when this phenomenon takes place. The reason for this problem can be inter-

preted as follows. Referring to Fig. 7(b), when the film thickness is small, large critical crack tip effective

strain is arrived by the large bending deformation (curvature). However when film thickness is large, it is

difficult or even impossible for the film to attain such large bending curvature to meet the high critical

effective strain requirement.
5. Finite element analysis results for thin film nonlinear peeling

Usually for elastic–plastic fracture analysis, the fracture process zone is characterized by a cohesive zone

model and the governing parameters are often taken to be ðC0; r̂Þ (Tvergaard and Hutchinson, 1993; Wei
and Hutchinson, 1997; Wei, 2002; Wei et al., 2002). Similarly, for the present thin film peeling process, the

cohesive zone model is adopted, and the governing parameters are still selected as ðC0; r̂Þ. For this problem,

elastic–plastic and two-dimensional finite element analysis model has been adopted by Wei and Hutchinson

(1998). This method can be delineated briefly here. Referring to Fig. 1, the detached portion on the right

side of cross-section 1 is treated with the bending model, while the other portions including thin film on the

left of cross-section 1 and substrate are treated with the finite element simulation. The bending model

solution for the detached portion on the right side of cross-section 1 is applied on the cross-section 1 when

the second problem is simulated by using the finite element method. The total solution form with inde-
pendent parameters is given by Eq. (40) (or see Wei and Hutchinson, 1998). The corresponding results for

the normalized peel force (normalized energy release rate), residual curvature as well as the crack tip slope

angle have already been presented by Wei and Hutchinson (1998), and these results are shown again in

Fig. 8(a)–(d). For comparison with the bending model solutions, Fig. 8(a) shows the variation of

P ð1� cosUÞ=C0 as a function of t=R0 for three values of N . The results are significantly different from

the bending model results given in last section. From Fig. 8(a), the normalized peel force increases

with increasing the film thickness for t=R0 < 6. For t=R0 > 6, the normalized peel force becomes inde-

pendent of the film thickness, and tends to the small scale yielding solution. Fig. 8(b) shows the variation
of P ð1� cosUÞ=C0 as a function of t=R0 for different values of w0 (inversely plastic bending effect). From

Fig. 8(b), there is a certain effect from w0 on the normalized peel force, however the variation trends

of relationship between P ð1� cosUÞ=C0 and t=R0 for different values of w0 are similar. Comparing

the results shown in Fig. 8(b) and 4(c), the inversely plastic bending effect based on the finite element

analysis model is much smaller than that based on the bending model. Fig. 8(c) shows the variation of

the normalized residual curvature with t=R0. From Fig. 8(c), the residual curvature decreases with

increasing the film thickness slowly and not sharply, unlike the bending model solution. Fig. 8(d) shows the

variation of the crack tip slope angle with t=R0. The slope angle decreases slowly with increasing film
thickness. From Fig. 8(c) and (d), the effects of w0 on the residual curvature and the crack tip slope angle



Fig. 8. The variations of the normalized peel force (a, b), residual curvature (c) and the crack tip slope angle (d) vs. the thin film

thickness based on the two-dimensional finite element analysis model, from Wei and Hutchinson (1998).
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are very weak based on the finite element analysis model. Comparing Fig. 8(c) with Figs. 4(d) and 6(b),

clearly, the calculated residual curvature based on the finite element method is much smaller than that

based on the bending model. This implies that the contribution of the plastic bending dissipation to the
energy release rate based on the finite element analysis model is much smaller than that based on the

bending model.

In order to further investigate and compare the solution features of thin film peeling process based on the

bending model and based on the finite element analysis model, the finite element analysis model is adopted

here for studying the effects of E=rY (yield strain eY ¼ rY=E) on the relationship between Pð1� cosUÞ=C0

and t=R0, and for studying very large ratio t=R0. The results are plotted in Figs. 9 and 10 for a strong

separation strength ðr̂=rY ¼ 4Þ and for a weak separation strength ðr̂=rY ¼ 1Þ, respectively. The difference
between results shown in Fig. 9(a) and (b) only lies in the range of t=R0 plotted in the curves. Obviously, the
peel force (energy release rate) is very sensitive to the value of E=rY. From Fig. 9(b), when film thickness is

very large, i.e., for t=R0 > 15, the peel force slowly decreases with increasing t=R0. Fig. 10 shows the sim-

ulation results for a weak interface ðr̂=rY ¼ 1Þ. The difference between results shown in Fig. 10(a) and (b) is

only in the range of t=R0. From Fig. 10(a), for t=R0 < 12, the normalized peel force increases as t=R0 in-

creases first, then tends to constant as t=R0 increases further, independent of t=R0 within a certain region.

However, for t=R0 > 15, increasing t=R0 further decreases the normalized peel force to tend to unity for very

large film thickness.



Fig. 9. Relations of the normalized energy release rate vs. the thin film thickness for several material yielding strain values ðeY ¼ rY=EÞ
and for a strong interfacial adhesion case. The results based on the two-dimensional finite element analysis model for conventional film

thickness region (a) and for a large film thickness region (b).

Fig. 10. Variations of the normalized energy release rate vs. the thin film thickness for several material yielding strain values

ðeY ¼ rY=EÞ and for a weak interfacial adhesion case. The results based on the two-dimensional finite element analysis model for

conventional film thickness region (a) and for a large film thickness region (b).
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6. Discussions and conclusions about modeling thin film nonlinear peeling

Solutions for thin film nonlinear peeling process have been revealed in Sections 4 and 5 based on both

the bending model with three different double-parameter criteria, and the elastic–plastic finite element

analysis model with the cohesive double-parameter criterion. There exists very big difference between the

bending model solutions for three double-parameter criteria. Obviously, the bending model solutions are

very sensitive to the selection of the governing parameters. This leads to a serious question: what is a

reasonable selection of the governing parameters for predicting the thin film nonlinear peeling in using a
bending model? From the solutions based on the first two double-parameter criteria as shown in Figs. 4–6,

when normalized film thickness is smaller than about 5, t=R0 < 5, the contribution of plastic bending

dissipation to the energy release rate is very large. This can be confirmed from the obtained high values of

the residual curvature, Figs. 4(d) and 6(b). The residual curvatures shown in these figures are much larger

than those shown in Fig. 7(b) based on the third criterion or shown in Fig. 8(b) based on the finite element

analysis model. From the solutions based on the bending model and the third criterion, when normalized

film thickness is smaller than about 5, t=R0 < 5, the contribution of the bending plastic dissipation to energy

release rate is obviously smaller than that based on the bending model and the first or second criterion. Let
us compare the bending model results shown in Figs. 4–7 with the elastic–plastic finite element analysis
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results shown in Figs. 8–10. The bending model results based on the third double-parameter criterion (the

interfacial fracture toughness and the critical Mises effective strain) is the most accurate within the range of

t=R0 < 5. As film thickness increases further, i.e., for t=R0 > 5, the results of the elastic–plastic finite element

calculation show towards the small scale yielding solution (insensitive to the film thickness), while the
bending model solution based on the third double-parameter criterion still increases linearly with t=R0, and

the criterion becomes invalid, as discussed in last section. It is interesting to compare the results shown in

Figs. 4(a) and (b) and 10(b) when adhesion between thin film and substrate is weak, i.e., for r̂=rY ¼ 1. The

normalized peel force, P ð1� cosUÞ=C0 reaches a maximum value at about t=R0 ¼ 15 based on the finite

element analysis model from Fig. 10(b), however, the normalized peel force reaches the maximum value at

about t=R0 ¼ 2 based on the bending model from Fig. 4(a) and (b). Comparing Fig. 9(b) with Fig. 10(b), the

small scale yielding solution within a range of the film thickness (5 < t=R0 < 13) tends to be preserved as

adhesion strength (r̂) increases, when film thickness is very large.
The following main conclusions are established from the present analyses.

(1) The peeling test solutions based on bending model are very sensitive to the selection of the governing

parameters.

(2) The prediction for peeling test problem based on the bending model and based on the double-parameter

criterion ðC0;�ecÞ shows the most accurate within the range of t=R0 < 5 by comparing the prediction

based on the elastic–plastic finite element analysis model. However, the double-parameter criterion

ðC0;�ecÞ becomes invalid for t=R0 > 5.
(3) An effective bending model criterion for t=R0 > 5 needs to be explored further.
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